ટોઇલેંટ-પાદ્યાત્ય શૈલી (પુરુષ) top // spanory tropped could acon programmed 1000 spander a year in usern tolking the (Source of Impri) તમને ચોષ્યું ટોઇલેટ વાપરવું ગમે છે, બીજા માટે પણ ટોઇલેટ ચોષ્યું રાખી. ઉલક્ક પગે ન બેસો. બહાર નીકળતાં પહેલાં ક્લશનો ઉપયોગ અચૂક કરો. બહાર નીકળતાં પહેલાં ધ્લાસ્ટિકની સીટ ઉપર કરો, અથવા બરાબર સાફ કરો. ઉપયોગ કર્યા પછી ફ્લશ, નળ વગેરે બરાબર બંધ કરો બિનજર્રી પાણી હોળશો નહીં હથ ધોવા સાબુનો ઉપયોગ કરો અને હ્યા ધોયા પછી સાબુ તેની જગ્યા પર જ રાખો. પાન, તમાક, સોપારી ગુટકા થુંકસો નહિ. કચરો કક્ત કચરાપેટીમાં જ નાખો. "ચોખ્ખાં ટોઇલેટ, ચોખ્ખાં કાશ, તંદુ રસ્તી હમેશા સાથ." # ટોઇલેટ-ભારતીય શૈંલી (પુરુષ) तमने योण्णुं वापरवुं गमे छे ने, तो जीका मार्ट पण टोઇसेट योण्णुं राणी બહાર નીકળતાં પહેલાં ફ્લશનો ઉપયોગ અચૂક કરો.. ઉપયોગ કર્યા પછી ફ્લશ , નળ વગેરે બરાબર બંધ કરો जिनक्षर्री पाधी खेलशे नहीं હાથ ધોવા સાબુનો ઉપયોગ કરો અને હાથ ધોયા પછી સાબુ તેની જગ્યા પર જ રાખો. કચરો કક્ત કચરાપેટીમાં જ નાંબો. પાન, તમાક, સોપારી, ગુટકા થુંકસો નહિ. "યોખ્ખાં ટોઇલેટ, યોખ્ખાં *હાથ, તંદુ રસ્તી હમેશા સાથ.*" ટોઇલેટ - ભારતીય શૈલી (મહિલા) Sauce of irrace તમને યોખખું દોઇલેટ વાપરવું ગમે છે ને, તો બીજા માટે પણ દોઇલેટ યોખખું રાખો. બહાર નીકળતાં પહેલાં કલશનો ઉપયોગ અચૂક કરો. ઉપયોગ કર્યા પછી કલશ, નળ વગેરે બરાબર બંધ કરો. બિનજરૂરી પાણી ઢોળશો નહીં હાથ ધોવા સાબુનો ઉપયોગ કરો અને હાથ ધોયા પછી સાબુ તેની જગ્યા પર જ રાખો. કચરો કક્ત કચરાપેટીમાં જ નાંખો. પાન, તમાક, સોપારી, ગુટકા થુંકસો નહિ "યોખ્ખાં ટોઇલેટ , યોખ્ખાં કાથ, તંદુ રસ્તી કમેશા સાથ." સેનીટરી નેપકીન કાગળમાં લપેટી અથવા કચરાપેટીમાં નાખો. # Annexure 5: Standard operating procedures for cleaning toilets Different equipment for different joints and corners, as well as different cleaning agents and sanitizers, should be used in the cleaning of different sanitary wares and fittings. To carry out proper toilet maintenance the following equipment-supplies are required: | Cleaner safety gear | Cleaning equipment | Consumables | Other equipment | | |---|---|---|---|--| | - Rubber Gloves - Face mask - Boots - Uniform/ Apron/ Overall | - Brush for cleaning toilet seats/ bowls - Brush for cleaning wash basins - Brush/ scouring paper for cleaning tiles - Brooms for wet areas - Brooms for dry areas - Cloths/ mops for cleaning floor - Floor Wipers - Sponge/ cloths for scrubbing plumbing fixtures and other general purposes - Bucket for mixing floor cleaning agent with water - Mug for pouring floor cleaning agent mix - Sponges/ soft cloth for cleaning mirrors - Dust collector/ dust colleting pan - Dustbins | - Liquid sanitary ware cleaning agent - Liquid/ powdered tiles cleaning agent - Liquid/ powdered floor cleaning agent - Liquids/ powdered plumbing fixtures cleaning agent - Soap/ non-abrasive cleaning liquid/ powder (non- acidic) - Disposable garbage bags - Hand washing soap - Naphthalene balls | - Sign boards/ Warning Signs - Trolley/ tray for carrying cleaning equipment - Room freshener - Piumbing snakes - Plunger | | Suggested instructions for cleaning of bathrooms | Frequency – minimum once a day | Materials | | |--|---|--| | Wash hands and wear gloves, face mask, protective uniform/
apron/ overall and boots | Gloves, face mask, protective uniform/ apron/ overall and boots | | | 2. Place the signboard to caution users of the toilet | Signboards | | | 3. Assemble items to be used for cleaning in a trolley/ tray | Trolley/ tray | | | Apply liquid/ powdered tiles cleaning agent on the tiled walls of
the bathroom and leave it for 15 minutes | Liquid/ powdered cleaning agent for tiles | |--|---| | Apply liquid/ powdered plumbing fixtures cleaning agent on taps,
faucet, and other plumbing fixtures and scrub using sponge. | Sponge | | Apply liquid/ powdered floor cleaning agent on the floor of the
bathroom and then leave 15 minutes or more. | Liquid/ powdered floor cleaning agent | | Scrub the wall tiles using a brush/ scouring paper and pour
water on the wall tiles. Use a dry cloth to wipe the tiles and
plumbing fixtures | Brush/ scouring paper, dry cloth | | 8. Use a brush/ wet broom to scrub floor and rinse floor with water | Brush/ wet broom | | Drain excess water from the floor using a wiper and mop the floor using a clean dry cloth. | Wiper, dry cloth/ mop | | 10.Clean and rinse all brushes, cloths, sponges and brooms used in the process and store them in the janitor's area. | 74.7 | | 11.Remove gloves and wash hands with soap thoroughly. | Hand washing soap | | 12.Conduct final inspection and update work records. | | | Frequency- Weekiy | | | Clean cobwebs and dust on ceiling and ventilators using a long handle broom/ brush | Dry broom | | 2. Repeat all the steps mentioned in daily cleaning . | | Suggested instructions for cleaning of water closets and urinals (Indian and Western) | equency – minimum once a day | Materials | |--|--| | Wash hands and wear gloves, face mask, protective uniform/apron/overall and boots | Gloves, face mask, protective uniform/ apron/ overall and boots | | Place the signboard to caution users of the toilet | Signboards | | Assemble items to be used for cleaning in a trolley/ tray | Trolley/ tray | | Remove garbage bags from all dustbins and place the dustbin outside the WC cubicle | . 3 | | Apply liquid/ powdered tiles cleaning agent on the tiled walls of
the WC cubicle and leave it for 15 minutes | Liquid/ powdered cleaning agent for tiles | | Apply liquid/ powdered plumbing fixtures cleaning agent on taps, faucet, and other plumbing fixtures and scrub using sponge. | Sponge . | | Flush once and then apply liquid sanitary ware cleaning agent inside the WC bowls/ seats. Leave it for 10 minutes. | liquid sanitary ware cleaning agent | | | Wash hands and wear gloves, face mask, protective uniform/apron/ overall and boots Place the signboard to caution users of the toilet Assemble items to be used for cleaning in a trolley/ tray Remove garbage bags from all dustbins and place the dustbin outside the WC cubicle Apply liquid/ powdered tiles cleaning agent on the tiled walls of the WC cubicle and leave it for 15 minutes Apply liquid/ powdered plumbing fixtures cleaning agent on taps, faucet, and other plumbing fixtures and scrub using sponge. Flush once and then apply liquid sanitary ware cleaning agent | | Clean the inside of the WC bowl/ seat using a brush ensuring all
stains are removed. | Brush for cleaning toilet seats/
bowls | |--|---| | 9. Flush or pour water to rinse the inside of the WC bowl/ seat | | | 10.Apply liquid/ powdered floor cleaning agent on the floor of the
WC cubicle and then leave 15 minutes or more. | Liquid/ powdered floor cleaning agent | | 11. Scrub the wall tiles using a brush/ scouring paper and pour water on the wall tiles. Use a dry cloth to wipe the tiles and plumbing fixtures | Brush/ scouring paper, dry cloth | | 12.Use a brush/ wet broom to scrub floor and rinse floor with water | Brush/ wet broom | | 13.For western WC seats, apply soap/ non-abrasive cleaning liquid/
powder on the seat rim and seat cover and clean it using
sponge/ cloth. Pour water over the rim and the cover and wipe it
using a dry cloth. | Soap/ non-abrasive cleaning liquid/ powder (non-acidic) | | 14.Drain excess water from the floor using a wiper and mop the floor using a clean dry cloth. | Wiper, dry cloth/ mop | | 15.Place a fresh garbage bag in the dustbins and place them in the WC cubicles | Garbage-bags | | 16.Clean and rinse all brushes, cloths, sponges and brooms used in the process and store them in the janitor's area. | | | 7.Remove gloves and wash hands with soap thoroughly. | Hand washing soap | | 8.Conduct final inspection and update work records. | | # Annexure 6: Standard operating procedures for
faecal sludge management ## 1. Background Proper treatment and management of fecal sludge is integral to safe sanitation practices which ensure health and well being of citizens. According to the Census 2011 data on sanitation, around 30 million urban households, or more than one thirds of all urban india depends on on-site sanitation solutions for safe waste water disposal. In Gujarat too, the reliance on on-site sanitation systems is very high. 105 out of the 167 cities in the state do not have any underground drainage system and are dependent on technologies such as single pits, twin pits and septic tanks for waste water disposal. Also in cities that have underground drainage network, the coverage of the underground network is limited. With rapid development, more and more properties especially in peripheral urban areas are making their own arrangements of waste water disposal. A rapid assessment of septage management in Asia carried out by USAID in 2010 revealed that about 148 million people in urban areas will have septic tanks by the year 2017. Though the National Urban Sanitation Policy (NUSP) emphasizes the need for proper collection, treatment and disposal of sludge from such on-site installations, very limited attention has been paid to the construction, management, maintenance and safe disposal of fecal sludge from these systems. Most urban local bodies (ULBs) in India are not able to effectively monitor the regular cleaning and maintenance of septic tanks and pits. Some ULBs provide septic tank and pit cleaning as a municipal service but the supply of such desiudging services is far from adequate. In many cities private players have filled this gap by providing these services for a fee. The private contractors also sometimes sell the nutrient rich sludge to farmers in the vicinity of cities. However the disposal of waste water is often not regulated. The sludge is dumped in storm water drains and open areas posing considerable health and environmental risks. Recognizing the growing importance of safe fecal sludge management practices, the Ministry of Urban Development (MoUD) has recently released an advisory to provide guidance to states and cities on policy, technical, regulatory and monitoring aspects of fecal sludge management. The advisory is a useful resource on fecal sludge management for cities in India. In addition to the advisory, the guidelines on design and construction of septic tanks issued by the Bureau of Indian Standards (BIS) and the Central Public Health and Environmental Engineering Organization (CPHEEO) are also a good reference on technical design and maintenance of septic tanks. These standard operating procedures (SOP) borrows from these two resources as well as the team's extensive experience of working with cities in Gujarat to establish a uniform procedure for fecal sludge management in Gujarat and present the information in a handy, comprehensive and easily accessible format. # 1.1. Existing fecal sludge management practices in Gujarat Like in other cities of India, fecal sludge management has been a neglected area in ULBs of Gujarat as well. The sector has not received any attention because of poor understanding of O&M requirements, lack of guidance, inadequate resources and skills, shortage of manpower and finance. Currently out of the 167 ULBs, only 62 have a partial sewer system. Most cities from the Saurashtra region do not have any underground drainage system and are dependent on on-site sanitation systems. The toilets are connected to septic tanks/ pits and the sullage/effluent is often discharged into road side storm water drains which are covered or open. Fecal studge generated in small cities often ends up in garbage dumps, storm water drains, water bodies or is used for agriculture. In cities that have sewerage network and functional STPs, studge is emptied in manholes or transported to STPs and treated along with the sewage conveyed through the underground network. ## Prevalent on-site sanitation systems (OSS) in cities in Gujarat Most existing toilets in urban Gujarat use pour flush latrine interface. Insanitary latrines such as dry latrines and service latrines have been phased out. The pour flush latrines are either connected to single pit, twin pits or septic tanks. Single pit system: It is observed that single pit system is one of the most widely used systems to dispose wastewater. These single pits are completely lined or partially lined at the top and then left un-lined. 'Lining materials include brick, concrete or mortar plastered onto the soil. These pits are constructed very deep (6-12m) and hence last for 15 or more years without emptying. Because of their depths, the pits cannot be completely cleaned using suction machines. The studge at the bottom hence hardens and the capacity of these pits to treat waste water keeps reducing over the years. As the pits are not cleaned often, they pose a risk of ground water contamination. Septic Tanks: Septic tanks are the second most commonly used OSS after single pits. They are designed as watertight chambers which provide primary treatment for blackwater and greywater. The liquid flows through the tank and heavy particles (sludge) sink to the bottom, while scum (mostly oil and grease) floats to the top. The septic tanks should be appropriately sized and the accumulated sludge and scum must be removed every 2-3 years. However in Gujarat, most septic tanks are constructed oversized and are not cleaned for 5-10 years. The effluent of the septic tank must be dispersed by using a soak pit or transported to another treatment technology. Soak pits are common in Gujarat. Many of these soak pits located in dense areas have lost their absorption capacity due to sludge entering into the pits because of lack of cleaning and maintenance of septic tanks. Hence soak pits also need to be emptied and cleaned frequently. Twin pit system: The Twin pit system consists of a pour flush tollet connected to two alternating pits. Only one of the two pits is used at any time and accommodates waste generated over one or two years. Then the second pit is used. This allows the contents of the first pit to transform into Pit Humus (a sanitized soil-like material) which is sale and can be manually excavated. The twin pit system is not a commonly found system in Gujarat. Where present, the system is often not used appropriately and effectively functions as a latrine connected to two single pits. Box 1Prevalent on-site sanitation systems in Gujarat Cities in Gujarat also do not have any reliable data on number of households dependent on each of these above mentioned systems. Anecdotal evidence suggests that cities are moderately aware of the functioning and difference between these systems. The Prohibition of Employment as Manual Scavengers (and their rehabilitation) Act, 2013, prohibits manual cleaning of pit toilets and septic tanks. Adopting mechanical processes for cleaning of septic tanks such as suction emptiers is seen as the only way to eliminate manual scavenging. Regrettably, part of septic tank / pit cleaning in some cities is carried out manually. Based on PAS-SLB data of 2013, 85cities in the state provide mechanized septic tank/ single pit cleaning as a municipal service. However, currently there is no infrastructure in any of the Municipalities in Gujarat for adequate fecal sludge treatment. GMFB has provided sludge sucking machines to the ULBs but sometimes these are inadequate and not functioning. Septic tank cleaning hence is often addressed by the private sector with little monitoring and regulation from the ULB. It is feared that the new Act may drive the already secretive business of fecal sludge emptying underground, and drive up the cost of emptying. Hence, it becomes essential that the ULBs recognize and register sludge emptying services as legitimate business, regulate their operations and enforce the use of mechanized suction machines. Simultaneously, ULBs need to augment their infrastructure and resources directly or through contracting out emptying, transport and treatment of sludge. For improving the coverage of safe sanitation in the State, the Government of Gujarat is providing financial assistance for underground drainage projects and for establishing sewage treatment plants. This assistance is under the Swarnim Jayanti Mukhya Mantri Shaheri Vikas Yojana for all 159 Municipalities. GUDM, GUDC and GWSSB have been identified as implementing agencies. But to achieve well functional sewerage, cities need to reach water supply levels of 135 lpcd, which is also going to take efforts and time. Till then fecal sludge management is of prime importance to ensure total sanitation. The septic tank combined with soak pit provides good sanitation and can work well with lesser (70-100 lpcd) level of water supply than that needed for conventional sewerage. Therefore it makes both economic and sanitation sense to manage sludge efficiently till sewerage becomes feasible and affordable. Figure 1 and Figure 2 show the current sanitation value chain in two cities surveyed by the UMC team. The line weight depicts the percentage of connections. Higher the weight, higher is the percentage. The green color denotes safe sanitation while the red ones denote un-safe practices that need to be improved. The dependence of households on on-site sanitation is higher in Himmatnagar and Amreli Municipalities. Figure 1 Sanitation value chain of Himmatnagar Figure 2 Sanitation value chain of Amreli User Interface Collection Conveyonce Teatment Individual & Politic Conmanity Tollet Septicants Sept ## 2. About the SOP This SOP is a step-by-step guide for ULBs to institute a framework for on-site sanitation system management. This SOP conforms to the advisory note on septage management released by MoUD and draws from UMC's experience of working with ULBs in Gujarat. It provides a set of written instructions on septic tank construction, cleaning
and maintenance and disposal of sludge in a concise format. The SOP also contains a set of recording formats to help ULBs to document the number of septic tanks and frequency of cleaning for better decision making. ## 2.1. Scope and Applicability The purpose of these guidelines and SOP is to establish a uniform procedure for construction, routine maintenance and regular cleaning and emptying of on-site waste water disposal systems. The procedures outlined in this SOP are applicable to all ULBs in Gujarat in which households are dependent on single pit, twin pit, septic tank system and other systems. This SOP covers the following areas: - Design and construction guidelines for twin pits and septic tank system - Cleaning procedure for pits and septic tanks - Safe transportation of septage - Septage treatment and disposal - · Appropriate re-use of treated septage ## 2.2. Methodology for Preparation of SOP The SOP is prepared based on the Advisory Note on Septage Management in Urban India (January 2013), and the Guidelines for Swachh Bharat Mission (December 2014) by the Ministry of Urban Development, Government of India along with data and information collected from various cities regarding their current fecal sludge management procedures. The UMC team with guidance from Mr. K. V. Dinesh visited eight cities (Patan, Deesa, Anklav, Dhrangadhra, Khambhat, Himmatnagar, Amreli and Lathi) to understand the existing practices in the ULBs. The team obtained firsthand information through interaction with concerned officers in ULBs regarding existing sanitation systems, infrastructure and facilities, recording Will st and monitoring frameworks and institutional arrangements for fecal sludge management in the city. The team also studied leading practices from other cities and countries in similar context to inform the preparation of the SOP for integrated FSM. 2.3. Target Audience for SOP This SOP is targeted to the Chief Officers, engineering staff and/ or staff in-charge of sewerage sanitation in ULBs of Gujarat state. This SOP intends to bridge the gap in understanding of O&M requirements of fecal sludge (also called septage) and provide handy guidance to ULBs through a step by step process for fecal sludge management # 3. Standard operating procedure for integrated fecal sludge management An integrated fecal sludge management plan would cover aspects across the value chain of on-site sanitation including safe collection, conveyance, treatment and disposal/reuse of the treated fecal sludge. 3.1. Conduct an audit of on-site sanitation systems technologies that collect and treat fecal sludge A ULB should conduct a comprehensive audit of on-site sanitation systems that provides the city officials with a base line of the existing situation in the city. The audit should cover the following areas: - Number of toilets connected to various types of on-site sanitation systems (single pits, twin pits septic tanks, others) - · Assessment of local construction standards, methods and technology - · Existing issues with on-site sanitation systems - Routine O&M by property owners - Cleaning and emptying frequency - 3.2. Provide guidance to property owners on construction of accepted OSS Tollet and septic tank construction are regulated by the National Building Code of India, 1983. The section on drainage and sewerage specifies sizing and design of toilet, septic tank and other sanitation infrastructure. - 3.2.1. Conversion of single pit systems into on-site primary treatment system. The ULBs should take proactive steps towards encouraging households to convert their exiting single pit systems to more advanced systems that include collection and primary treatment. The addition of a septic tank or other treatment system before the single pit can enable households to convert the single pits into a soak pit (if the pit adheres to construction standards and has absorption capacity). The ULBs should also ensure that the disposal system of all existing public and community toilets in the city is improved to an on-site treatment system. 3.2.2. Construction of twin pits Twin pits system consists of two underground chambers (pits) to hold and treat fecal sludge. These are normally offset from the toilet and should be at least 1 meter apart. A single pipe leads from the toilet to a small diversion chamber, from which separate pipes lead to the two underground chambers. The pits should be lined with open-jointed brickwork. Each pit should be designed to hold at least 12 months accumulation of fecal sludge. Wastewater is discharged to one pit until it is full. Discharge is then switched to the second chamber. The filled up pit can be conveniently emptied after 1.5 to 2 years, when most of the pathogens die off. The sludge can safely be used as manure. Thus the two pits can be used alternately Figure 3 Twin pit system (eawag & IWA, and perpetually. Refer Annexure A for details on construction specifications for the system for various soil types and contexts (Ministry of Urban Development & JICA, 2013). #### 3.2.3. Construction of septic tank based systems CPHEEO prescribes septic tanks as double chambered with specified sizes. Septic tanks need to be watertight and are built of bricks, stones or concrete. The recommended sizes of septic tanks and soak pits (used in Gujarat cities to serve dual function of storage & digestion of solids and infiltration of liquids) are shown in Tables 21.1, 21.2 and 21.6 of CPHEEO manual on Sewerage and Sewage Treatment Systems Part A Engineering and are reproduced in Annexure B, Cities can adopt their own innovative techniques for septic tank construction by using locally available material and skills. Figure 4 Double chambered septic tank Image source: Compendium of Sanitation Systems and Technologies - 2nd Revised Edition)(eawag & IWA, 2014, p. 74) Figure 5Local Innovation- Readymade Septic Tanks of RCC and Plastic used in Maharashtra & Jharkhand Image source: K. V Dinesh and Sintex (Sintex) The process of design and construction should be done very carefully; otherwise, problems may occur due to poor design and workmanship of septic tank and soak pit. A possible solution to this can be provision of standard designs of septic tanks to the citizens by the ULB and adoption of a simple process of construction, verification and approval which can be clubbed with the house completion report. Effluent from the septic tanks should ideally be disposed using soak pits or leach fields which allow the absorption of liquids in the ground or should be conveyed using a solids-free/ settled sewer. #### Disposal of effluents using soak pits A soak pit is a porous-covered chamber that allows effluent from septic tanks to soak into the ground. It is also known as a soak-away or leach pit. The soak pit should be connected to the septic tank by an extension pipe with a T junction to receive the over flow from the tank. The diameter of soak pit is generally 900 mm with depth varying from 2400 to 4000 mm. The soak pit is filled with bricks or broken stones and is covered with stone or RCC slab. A vent pipe should be provided to release the gases produced in the soak pit. For detailed construction guidelines on septic tanks and soak pits, refer the Manual of Sewerage and Sewage Treatment Part A Engineering published by MoUD (Ministry of Urban Development & JICA, 2013, pp. 9-23). ### Conveyance of effluent to an off-site treatment facility In cities where discharging effluent into drains is a common practice, it is recommended that ULBs include alternative solutions in their long-term plans. ULBs can explore systems like settled or solids-free sewer system which is designed as a network of small-diameter pipes that transport pre-treated and solids-free wastewater (such as septic tank effluent). This system is economical than the conventional underground drainage system. It can be installed at a shallow depth and does not require a minimum wastewater flow or slope to function. For the detailed guidelines on settled or solids-free sewer system, refer Compendium of sanitation systems and technologies by Eawag and IWA (eawag & IWA, 2014, p. 92). ## 3.3. Provide guidance to property owners on routine O&M of OSS Routine operations and maintenance of the complete on-site sanitation system is critical to ensuring safe and efficient sludge management practices. ULBs should educate and inform property owners about the proper functioning and maintenance requirements of these systems and encourage them to clean them often. The on-site O&M responsibilities of sanitation infrastructure (private) for which property owners are responsible include: - Repair and maintenance of toilets, septic tank, soak pit and piping - Clearing pipe blocks - Getting fecal sludgeemptled from private or municipal vacuum emptier at an Interval of 2-3 years. Figure 6 ULBs can distribute flyers and carry out IEC campaigns about proper septic tank/ soak pit usage Image source: United States Environmental Protection Agency (USEPA) ## 3.4. Prepare a service plan for scheduled emptying of septic tanks All ULBs should ensure safe emptying of cn-site treatment units at regular intervals. Currently most households get their septic tanks cleaned once in 8-10 years. It is evident that there is not enough awareness among households to get their septic tanks cleaned at regular intervals of maximum 2-3 years. The ULB should initiate scheduled septic tank desludging services and carry out extensive awareness campaigns to ensure that the septic tanks are cleaned at least once in three years. The scheduled emptying services should be provided on a rotating, three to five year cycle. In order to comply with The Prohibition of Employment as Manual Scavengers (and their rehabilitation) Act, 2013, ULBs need to ensure that all septic tanks and pit systems in the city are cleaned mechanically. The ULBs should either provide the emptying services themselves or enter into service contracts with
private agencies. The contracts could also include construction and operation of treatment options like sludge drying beds. If the private players are providing the service, ULB should monitor their services. Suggestive criteria for selecting private emptiers should include: - Provision of safety and protective gear to the cleaners - Availability of mechanical cleaning equipment (Vacuum emptiers) - Availability of a doctor on call - Adequate number of trained staff - Agreement to follow procedures listed in SOP Since the households will be unlikely to pay for the scheduled services, the ULBs can consider raising their local taxes or charge a fixed amount as user charges for sanitation every year. The private service providers could then be compensated by the ULB. # Scheduled emptying of septic tank, Experience from Marikina city, Philippines Source: A Rapid Assessment of Septage Management in Asia, Policies and Practices in India, Indonesia, Malaysia, the Philippines, Sri Lanka, Thailand, and Vietnam, January 2010, USAID To achieve its goal of desludging all septic tanks in the city by 2011, Marikina City is implementing the "OplanTodeSipsip" program with Manila Water Company, Inc. (MWCI). Developed with support from the ECO Asia program, the initiative mobilizes local barangay leaders to educate communities about desludging septic tanks. As a result, Marikina City has increased the percentage of households using desludging services from 40 to 55 percent. Cooperative actions include the following: - Community meetings are held to explain the program in advance of the desludging; - A sound truck and filers advertise desludging in a community the day before it is done; - Local barangay staff accompany MWCI desiudging crews to encourage homeowners to cooperate and open inaccessible septic tanks; - MWCI places stickers on houses that have been desludged, so a second visit can be made later to the homes without stickers; and - Promotion campaigns are conducted that include distributing informative calendars, art contests, and hand washing events. The project aims to desludge all 90,000 septic tanks in Marikina City on a rotating five-year cycle. At the time of writing, however, MWCI had only desludged 5,400 septic tanks. Box 2Scheduled emptying of septic tank, experience from Marikina city, Philippines # 3.5. Invest in capital infrastructure ## 3.5.1. Procure cleaning equipment. Septic tank needs emptying in regular intervals of depending on its design capacity. The ULBs need enough vacuum emptiers to effectively service all septic tanks in a city. The ULB can buy these emptiers or can ensure adequate equipment through signing service contracts with private contractors. Indicative capacities and other details of sludge emptying equipment available in India are listed in the table below: | Tank capacity (litres) | Table 1 Indicative detail
Gross Vehicle
Weight (Tonnes) | ls of fecal slud
Vacuum
(%) | ge emptying equipment Displacement (litres per minute) | Positive pressure (bar) | |------------------------|---|-----------------------------------|--|-------------------------| | 1000 & 1500 | 5 | 80 | 1500 – 4500 | 2.0 | | 3000 | 10 | 80 | 1500 -4500 | 1.5 | | 6000 | 16 | | 90 | 3200 - 9000 | 1.5 | |------|----|--|----|--------------|-----| | 9000 | 25 | | 90 | 4500 – 12000 | 2.5 | ULBs can also procure dedicated small footprint (1500 – 3000 liter capacity) vacuum emptiers to service siums and other areas where access is narrow. For areas with wide roads (>9m), vacuum emptiers of capacity 5000-9000 liters can be deployed. The following box shows indicative requirement of cleaning equipment for cities of Patan and Lathi (Ministry of Urban Development, 2013, p. 40). ## Patan | Number of septic tanks in the ULB (Census 2011) | 8692 | |---|----------------------------------| | Existing number of emptiers | | | If septic tank needs to be cleaned once in three years ,then number of septic tanks need to be cleaned in a day | (8692/305*3)
= 9.5 (Appx. 10) | | Assuming that present emptier cleans 5-6 septic tanks /day ,then additional number of septic tank emptiers needed | 1 | | Cost of emotier @ Rs. 1,500,000 (incl. prime mover) | Rs. 15 lakh | | Annual O&M cost per emptier | Rs. 2 lakh | | Annual Salary of stalf involved in septic tank emptying process | Rs. 2.5 lakh | | Income earned per emptier per annum by emptying 500 septic tanks @service fee of Rs. 500-Rs 1500 / tank | Rs, 2.5 Lakh-Rs. 7 | #### 2563 Number of septic tanks in the ULB (Census 2011) Existing number of emptiers If septic tank needs to be cleaned once in three years ,then number of septic (2563/305*3) tanks need to be cleaned in a day = 2.8 (Appx.) Assuming that present emptier cleans 3 septic tanks /day ,then number of septic tank emptiers needed Cost of emptier @ Rs. 700000 (incl. prime mover) Rs. 7 lakh Rs. 1 lakh Annual O&M cost per emptier Annual Salary of staff involved in septic tank emptying process Hs. 2.5 lakh Income earned per emptier per annum by emptying 915 septic tanks @service Rs. 4.5 lakh - 13.7 lakh fee of Rs. 500-Rs 1500 / tank Box 3Calculating requirement for vacuum emptiers for Patan and Lathi # 3.5.2. Construction of sludge drying beds The ULB needs to construct sludge drying beds to appropriately treat the fecal sludge. As the sludge is partially treated in the septic tank, it requires appropriate treatment before the usage. Drying of the sludge in the drying beds is considered as one of the septage treatment system. The following table presents the area requirement for sludge drying beds if the quantum of sludge generated is 100 cum/day: Table 2 Calculation of Sludge drying beds and area required Sludge drying Beds | 1 | Quantum of sludgeto be treated (cum/day) - HHs level | | 100 | | |---|---|-----------|------|----| | 2 | Single Drying Bed area (12m x 12 m) | | 144 | | | 3 | Max. Sludgedepth (m) | | 0.3 | | | 4 | Capacity per bed (cum) | - 1 | 43 | 3 | | 5 | Sludge drying cycle (days) | | 10 | | | 6 | Total No. of sludge drying beds required (SDB) | | 30 | | | 7 | Total site area (SD Bed area + 10% SD bed area + area of and dried storage + area of ancillary units) (sqm) | of office | 13,2 | 50 | | | | | | | Source: (Ministry of Urban Development, 2013, p. 36) ## 3.6. Establish customer service protocols Once the ULB has procured the vacuum emptiers or made required arrangements with private contractors, the ULB should establish customer service protocols and convey it to the citizens by publishing in the local newspaper, holding meetings and displaying the information at citizen service centers. The ULB should also establish a helpline number and publicize it widely. ## 3.7. Follow operating procedure for cleaning septic tank/ soak pit 3.7.1. Daily Preparation for the ULB / emptying and transport service - · Receive work orders for the day - · Check the functioning of vacuum emptier and equipment - Check personal protective equipment All employees shouldberesponsible for maintaining their own personal protective equipment (such as gloves, boots, hat, face mask, Davy's lamp) in good condition - Check Disinfecting and spill control equipment Operators should be trained on identifying spills and proper methods of disinfecting. Sprinkle lime over spilled area, wait 15 minutes, then wash with water - Check Hoses inspect hoses for cracks and wear– discard or repair worn and broken hoses. Connecting the Hose in the correct manner using the clamp style fitting ensures a tight and leak proof connection. 'Use of twine and plastic for making connections causes leaks and require cleanup. Figure 7 Connecting Hoses Image source: K.V Dinesh 3.7.2. Operating the vacuum emptier Operators should become familiar with the proper operation of the equipment in use for each operation. This includes the physical operation of the truck, and all valves, piping, power take-offs and ancillary equipment for the vacuum emptier (including the tank, valves, hoses, and fittings). The following steps can be followed for operating the vacuum emptier: Figure 9 Operating the vacuum emptier image source: (Robbins, 2007) - Reach the first site and meet the building owner. - Before pumping, check the tank to look for obvious damage to the structure and to verify proper piping is in place. - Check the water level to get clues as to tank condition: high levels (above outlet level) indicate a clogged outlet; low levels (below outlet level) indicate a leaking tank (or tank not in use). - Check for back flow into tank during pumping and when pumping is complete. Flow back may indicate a problem with plumbing in the house or clogged disposal. - Open the access covers, inspect the interior and exterior of the tank. If more than one, locate and remove lids (for at least 2 hours) from all compartments. - Each compartment will require pumping after ventilating. Probe the tank with the last length of hose. This will provide an indication on the volume of sludge to pump. - Start the pump or vacuum equipment. The operator will make sure there is suction and that the pump is operating. - Volume in the tank should start decreasing rapidly. Use hose to break up sludge and scum to the extent possible. After pumping is complete, check the tank for remaining sludge. If there are accumulated solids remaining, initiate the pump-back procedure, which is to send the pumped fecal sludge under pressure back into the tank and direct this flow toward the sludge mass. This will break up the mass, making it possible to pump out. When pump-back is complete, pump out the tank again (suction). When pumping is complete, wash the hoses and replace the tank
lids. Clean up any spills and disinfect with lime or bleach solution. ## 3.7.3. Cleaning and desludging on site systems Septic tank/Single pit emptying: The process of septic tank emptying can be broken down into the following three simple steps: From septic tanks firstly a small quantity of scum in the vicinity of the suction pipe is withdrawn. Liquid septage is extracted until sludge at the bottom is reached. Sludge comes off last and is fully sucked out only if there is bottom slope in the septic tank towards outlet. It is important to empty the tank completely including sludge. Figure 10 Septic tank emptying procedure If tanks are emptied partially, they become more and more filled with hardened sludge, washout of solids occurs and quality of effluent deteriorates. Septic tanks must be emptied once in 2-3 years or even earlier intervals when they are overloaded. If the single pits are not dug very deep and cleaned regularly at an interval of 2 to 3 years the sludge from the pits can be emptied mechanically. If the hardened sludge is to be mechanically removed, the pit should be back washed and the sludge should be diluted and then emptied. #### Soak pit cleaning In most cities septic tanks are not cleaned regularly due to which sludge enters soak pits and gets accumulated resulting in diminishing the capacity of soil. In high water table or in stony, gravely soils where percolation capacity of soil is limited, the soak pits get filled and hence need to be cleaned. Soak pits up to 3.5m depth can be fully emptied by the vacuum emptier. Hence it is essential that ULBs and State do not permit soak pits deeper than 3m. Image 4 shows a typical example of soak pit emptying in Anklav city. For emptying typical soak pits in Gujarat cities the following steps can be followed: Remove the Soil Cover (1-1.5m) and puncture the concrete cap to make a hole to insert the suction pipe For soak pits till the depth of 3.5m vacuum emptier can be used to completely empty the pit Pump water into the pit to make the pit contents dilute to enable smoother flow Figure 11 Soak plt cleaning procedure However in the long term, it is recommend that in areas where the percolation capacity has reduced ULBs should consider alternate systems like settled sewerage system or connect to open drain system as an intermediate solution #### Cleaning, twin pits Once a pit is full in a twin pit system, it should be closed and the wastewater should be channelized to the second pit. The full pit should be emptied only after one to two years after the contents of the pit have transformed into a partially sanitized, soil-like material called pit humus. Pit humus can be manually excavated. ## 3.8. Safely transport fecal sludge to sludge treatment site Figure 125eptage emptying vehicle Image source: UMC If cities have an oxidation pond or a Sewage Treatment Plant, the emptier should dispose fecal sludge into STP inlet chamber or into the manhole on the outfall sewer or in the sludge drying beds. In case of partial sewerage, it is not advisable to dispose these in the sewers since it will end up as sludge in open drains and make the situation worse. If the ULB do not have any provision of the treatment system, ULB can select the suitable treatment and the following actions at fecal sludge receiving site are summarized below. - Plan the trip so as to arrive at the disposal site within the specified disposal site operating hours - Report equipment malfunctions or required repairs immediately to supervisors. - At the Disposal Facility position the truck so that the fecal sludge may be directed to the receiving chamber with only one length of hose - · Open the valve and allow the sludge to flow via gravity into the receiving chamber - . When the tank is empty, disconnect hose and clean tank and hose with water - Use all safety precautions at disposal site and keep site clean ### 3.9 Treat and dispose fecal sludge Sludge is the black water from toilets mixed with grey water from bathrooms whereas septic tank effluent is the liquid part which flows out from septic tank (since solids are trapped in septic tank). Sludge has a much higher concentration of pollutants than the septic tank effluent. Biological Oxygen Demand (BOD) and Total Suspended Solids (TSS) are two common measurements of the strength of wastewater. Sludge may have BOD concentrations between 440to78, 600 mg/l and TSS values in excess of 90,000 mg/l; where septic tank effluent has values averaging 200 mg/l BOD and 300 mg/l TSS. As septic tanks fill with sludge, the effluent begins to resemble fecal sludge with higher pollution values. Therefore, regular desiudging provides dramatic improvements in effluent quality. Detailed sludge characterization (BOD, TSS &other microbial characteristics) as well as its dewatering characteristics (specific resistance etc.) should be dorie prior to the design of any fecal sludge management facility. Treatment of sludge can be of two types, treatment at sewage treatment plants and at independent septage treatment plants. The details of these two types of treatment are given in the section below: **** 3.8.1. Treatment of fecal sludge at Sewage Treatment Plants Co-treatment of fecal sludge along with municipal sewage at a STP if available in the city is the most desirable option. Though sludge is more concentrated in its strength than domestic sewage, its constituents are similar to municipal wastewater. The sewage treatment plants should have adequate capacity to accept the sludge without hampering the functioning of the sewage treatment plant. Another possible way (needs checking for STP shock load or overload) is to dispose fecal sludge into easily accessible manholes at steep gradient sections on outfall sewers. Sludge could be added to sewage immediately upstream of the screening and grit removal processes. Fecal sludge could be processed with the sludge processing units of STP. If fecal sludge is to be co-treated with sewage, it will be necessary to construct a fecal sludge receiving chamber. Chemicals such as lime or chlorine can also be added to the fecal sludge in the storage tank to neutralize it, to render it more treatable, or to reduce odors. Figure 13 Sludge disposal into inlet chamber of STP lmage Source: septage management guide for local governments, 2007, David M. Robbins Treatment at independent Fecal Sludge Treatment Plants When a city does not have a sewage treatment plant, a treatment plant specially meant for sludge treatment becomes the option to consider. These include: a) Lime stabilization – odor control, conditioning and stabilization of the sludge. b) Dewatering – sludge drying beds or mechanical dewatering. c) Anaerobic / aerobic wastewater treatment – liquid from the sludge drying beds and mechanical dewatering systems. d) Co-composting with organic solid waste. ## Lime stabilization Lime stabilization is practiced to stabilize, control odor, vector and pathogen destruction. Lime stabilization involves adding and thoroughly mixing lime (lime powder slaked with water in 1:3 proportions, 15 litres of slaked lime for 4000 litres of septage) with each load of septage to ensure that the pH is raised to at least 12. Lime addition could be done at any of these three points: In the septage emptier In a septage receiving tank where septage is discharged Spread septage in a pit and apply lime every time septage is dumped. Sludge drying bed An unplanted drying bed is a simple, permeable bed that, when loaded with sludge, collects percolated leachate and allows the sludge to dry by evaporation. Approximately 50% to 80% of the sludge volume drains off as liquid or evaporates. The sludge, however, is not effectively Planted Sludge drying bed ... , D A planted drying bed is similar to an Unplanted Drying Bed, but has the added benefit of transpiration and enhanced sludge treatment due to the plants. The key improvement of the planted bed over the unplanted bed is that the filters do not need to be desludged after each feeding/drying cycle. Fresh sludge can be directly applied onto the previous layer; the plants and their root systems maintain the porosity of the filter. The septage after lime dosing is pumped to screw press or any other mechanical dewatering machine. Polyelectrolyte (a chemical commercially available for use as a coagulant in water supply and sewage treatment) is added to improve the dewatering efficiency. The liquid residual/ /filtrate from dewatering machine needs to be further treated before disposal. The dewatered sludge needs to be dried or composted prior to reuse as soil conditioner / organic fertilizer. Instead of Screw Press the other options could be to use Centrifuge or Belt Press or a Filter Press. Many companies in India are manufacturing sludge dewatering Figure 16 Planted Sludge drying bed Image source: Compendium of Sanitation Systems and Technologies - 2nd Revised Edition Figure 17 Septage dewatering Composting of Septage Composting is a popular method of treating septage. During the composting process organic material undergoes biological degradation to a stable end product. Approximately 20 percent to 30 percent of the organic solids are converted to carbon dioxide and water. Image Source: Cao Dzien co composting plant in Hanoi, Vietnam. Business Analysis of Fecal Sludge Management, Sept 2012, Gates Foundation As the organic material in the septage decomposes, the compost heats temperatures in the range of 50 to 70 degrees Centigrade and harmful pathogens are destroyed. The resulting humus-like material is suitable as a soil conditioner and source of nitrogen and phosphorus. The basic procedure for composting is as follows: Septage is mixed with a bulking agent (e.g. agricultural residue, cow dung, organic part of municipal solid waste) to decrease moisture content of the mixture, increase porosity, and assure aerobic conditions during composting. • The mixture is aerated by mechanical turning ("agitated") for
about 28 days. The most common "agitated" method is windrow composting: the mixture of septage or wastewater solids and bulking agent is pushed into long parallel rows called "windrows", about 1 to 2 meters high and about 2 to 4.5 meters at the base. The cross-section is either trapezoidal or triangular. Several times a week the mixture is turned over using a front-end loader to move, push, and turn the mixture. Factors affecting the composting process (USEPA 1984) include moisture content (40 percent to 60 percent); oxygen (5 percent to 15 percent); temperature (must reach 55 to 65° C); pH (6 to 9); and carbon-to-nitrogen ratio (30:1). Pit composting is simple, does not need any equipment and has been practiced in Gujarat before. The process involves digging many pits (1.2m wide, 1.5m deep and 4m long) and covering with soil (2-3 inches) every time septage is dumped until it gets filled. Contents of the pit are emptied and can be used for soil enrichment after 6 months, by this time most pathogens die off and composting is complete. Treated septage is safe for agricultural use. Innovative Approach for Septage Management Source: Business Analysis of Fecal Sludge Management, Sept 2012, Gates Foundation Recent innovative method of using a geo tube for septage storage and transfer has been introduced in Malaysia. The geo-tube material is made of a porous membrane with the sludge received through a hose from a truck. Discharge can be achieved by using a pump or gravity. Sludge in the geo-tube is gradually dewatered by leaching through a porous membrane and the leach ate is treated in the nearby STP while the solids are retained inside. Exposure to the outdoor neat further dries the sludge and the geo-tube is eventually transported to a landfill or recovery facility. Geo-tube before and after use in Malaysia 5.925 Box 4Innovative Approaches of Septage Management Dewatered septage/sludge can be used as a fertilizer in agriculture application - A fecal coli form density of less than 1000 MPN/g total dry solids - Salmonella species density of less than 3 MPN per 4 g of total dry solids. - WHO (2006) suggests helminth egg concentration of < 1/g total solids and E-coli of 1000/g total solids in treated septage for use in agriculture. Properly treated sludge can be reused to reclaim parched land by application as soil conditioner, or as a fertilizer in agriculture. Deteriorated land areas, which cannot support the plant vegetation due to lack of nutrients, soil organic matter, low pH and low water holding capacity, can be reclaimed and improved by the application of treated septage. Septage sludge, as a result of lime stabilization has pH buffering capacity that is beneficial for the reclamation of acidic soils. Treated septage is applied with agricultural manure spreaders. Liquid sludge, typically with solid content less than 6 percent are managed and handled by normal hydrautic equipment. Treated septage contains nutrients in considerable amounts, which supports the growth of a number of plants. Drip irrigation is the preferred irrigation method for settled septage effluent when irrigation is feasible. Crops which could be safely grown are corn, fodder, cotton, trees including fruit trees, eucalyptus and poplar. Aquaculture can be practiced for settled septage effluent when freshwater is available to achieve dilution to ensure dissolved oxygen is above 4 mg / l. Fish species of tilapia and carp are preferred since they tolerate low dissolved oxygen. Both drip irrigation and aquaculture need land and are feasible at city outskirts. #### 3.8.3. Full cost recovery To be sustainable, the septage management programs should be funded from the users in the form of user fees. This fee can be added to either the property tax or it can also be used as a pay and use system. This fee should include cost of staff, transportation, treatment, disposal and operation and maintenance. An example of cost recovery is Marikina City, Philippines. Manila Water Company, the service provider, will purchase eight new septage pumping trucks and fund a mechanized treatment facility in exchange for a 10% surcharge added to the monthly water bill. The program will fund septage pumping of 55,547 septic tanks every 5.25 years (Robbins, 2007). ## 3.8.4. Social marketing This includes initiating programs for educating the citizens at large. Dedicated Information, Education and Communication (IEC) programs need to be undertaken to inculcate education on sanitation for school children, youth and women in the city. 400 The social marketing system has different steps, these can include surveying the existing perceptions, conducting meetings with stakeholders, developing technical committees and outreach tools for media outlets, pre testing the tools, performing final surveys and deploying the messages to gauge results. In Muntiniupa, the city and the technical team developed a campaign plan with target audiences and messages and then developed a mascot, fliers, posters, newspaper ads and a video about the market treatment facility that was aired on a local cable TV station (Robbins, 2007). 3.9. Recording and Reporting Keeping accurate records regarding tanks and volume pumped is important for billing and compliance. Recordkeeping is an integral part of a comprehensive septage management program. The "manifest system" is a tracking and compliance tool. It helps ensure that all of the septage pumped arrives at the disposal site and minimizes the opportunity for illegal discharge. It is also a record that some septage programs may choose to use for paying septage hauling subcontractors. Manifest forms are simple receipts that specify: · the location or address of the pumped septic tank septage characteristics (residential or commercial) the name and address of the property owner or occupier · the volume of septage pumped any notes regarding tank deficiencies, missing pipes or fittings, improper manholes or access ports, cracks or damage observed All ULBs should keep a manifest form record for each septic tank / soak pit emptied (A sample manifest form is shown in Annexure 6 D). Once completed, a copy of the manifest is given to the property owner as a receipt. When the septage load is delivered to the disposal site, the disposal site operator: - accepts the load - varifies the volume - takes,a sample if needed signs the manifest proving receipt of the volume of septage disposed of It may be advantageous for the operator (ULB or private) to pump out multiple tanks before going to the disposal site. In this case, a multiple-load manifest form should be completed as well as in addition to individual manifest/receipt forms. The completed document or documents should be given to the ULB for their records. Cities with more than one lakh population should maintain the records at ward level for on-site sanitation system cleaning. 3.10. Ensure safe practices Never enter a septic tank / soak pit which has not been well ventilated. Check for gas levels before entering septic tanks, manhoies and closed chambers. Following steps should be followed as safety measures for septage management: - Always keep first aid kit, gas detection lamp and fire extinguisher in the septage emptier vehicle - Provide training to workers handling septage on safety and hygiene practices - Provide fencing or compound around septage treatment facility premises - Train staff and compet them to wear helmets, gum boots and gloves while on work. - Ventilate covered tanks/pits by keeping them open for sufficient period before entering - Paste list of emergency numbers on septage emptier and at a prominent place in septage treatment / disposal unit